首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   563篇
  免费   40篇
  2016年   5篇
  2015年   12篇
  2014年   13篇
  2013年   19篇
  2012年   23篇
  2011年   13篇
  2010年   10篇
  2009年   12篇
  2008年   11篇
  2007年   11篇
  2006年   24篇
  2005年   17篇
  2004年   22篇
  2003年   13篇
  2002年   13篇
  2001年   9篇
  2000年   23篇
  1999年   6篇
  1998年   14篇
  1996年   7篇
  1995年   9篇
  1994年   7篇
  1993年   6篇
  1992年   11篇
  1991年   15篇
  1990年   12篇
  1989年   8篇
  1988年   12篇
  1987年   14篇
  1986年   10篇
  1985年   7篇
  1984年   13篇
  1983年   11篇
  1981年   5篇
  1979年   6篇
  1978年   9篇
  1977年   8篇
  1976年   8篇
  1975年   8篇
  1974年   6篇
  1973年   6篇
  1972年   5篇
  1971年   10篇
  1970年   8篇
  1969年   6篇
  1968年   6篇
  1967年   6篇
  1966年   5篇
  1953年   5篇
  1942年   7篇
排序方式: 共有603条查询结果,搜索用时 140 毫秒
91.
The internal transcribed spacer region of the ribosomal RNA, ITS2, was sequenced from a singlé specimen of S. hippopotami collected from a pulmonary artery of the hippopotamus, Hippopotamus amphibius in South Africa. The nucleotide sequence was aligned with those of S. mansoni, S. rodhaini, S. haematobium, S. intercalatum, S. curassoni. S bovis and S. japonicum. Both maximum parsimony and genetic distance analyses were performed on these data sets. Using S. japonicum as outgroup to the African schistosomes, a single most-parsimonious tree was obtained of length 64 steps with a consistency index of 1. S. hippopotami was the sister-group to the remaining African species. This species has lateral-spined eggs and its basal position in the tree suggests that this condition is primitive and that terminal-spined eggs developed secondarily. Molecular data clearly show that S. hippopotami cannot be considered synonymous with S. mansoni. Assuming the hippopotamus is the normal host of S. hippopotami, phylogenetic analysis is consistent with an ancient association between schistosomes and ungulates.  相似文献   
92.
Ionizing radiation (IR) treatment results in activation of the nonreceptor tyrosine kinase c-Abl because of phosphorylation by ATM. In vitro evidence indicates that DNA-dependent protein kinase (DNA-PK) can also phosphorylate and thus potentially activate Abl kinase activity in response to IR exposure. To unravel the role of ATM and DNA-PK in the activation of Abl, we assayed Abl, ATM, and DNA-PK activity in ATM- and DNA-PKcs-deficient cells after irradiation. Our results show that despite the presence of higher than normal levels of DNA-PK kinase activity, c-Abl fails to become activated after IR exposure in ATM-deficient cells. Conversely, normal activation of both ATM and c-Abl occurs in DNA-PKcs-deficient cells, indicating that ATM but not DNA-PK is required for activation of Abl in response to IR treatment. Moreover, activation of Abl kinase activity by IR correlates well with activation of ATM activity in all phases of the cell cycle. These results indicate that ATM is primarily responsible for activation of Abl in response to IR exposure in a cell cycle-independent fashion. Examination of DNA-PK activity in response to IR treatment in Abl-deficient cells expressing mutant forms of Abl or in normal cells exposed to an inhibitor of Abl suggests an in vivo role for Abl in the down-regulation of DNA-PK activity. Collectively, these results suggest a convergence of the ATM and DNA-PK pathways in the cellular response to IR through c-Abl kinase.  相似文献   
93.
94.
The murine white (W) spotting locus is the site of the c-kit gene and encodes a tyrosine kinase receptor while the complementary Steel (Sl) iocus encodes its ligand. Mutations at either locus have profound effects on hematopoiesis, particularly erythroid and mast cell proliferation. We added c-kit antisense oligonucleotides to long-term suspension cultures of enriched human umbilical cord progenitor cells. This resulted in the suppression of c-kit gene expression and the preferential suppression of the generation of erythroid burst-forming cells (BFU-E) which extended over the life of the culture (3 weeks). The results provide an in vitro model of the “W phenotype” in human hematopoiesis and confirm the importance of c-kit gene function in early erythropoiesis. Because the generation of BFU-E was suppressed even after c-kit gene expression had recovered, this gene product may be critical to the erythroid commitment process. © 1993 Wiley-Liss, Inc.  相似文献   
95.
A simple and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method using an atmospheric pressure chemical ionization source (APCI) for the quantification of fenretinide (4-HPR) in mouse plasma was developed and validated. After a simple protein precipitation of plasma sample by acetonitrile, 4-HPR was analyzed by LC-APCI-MS/MS. High-performance liquid chromatography (HPLC) separation was conducted on a Hypurity C18 column (50mmx2.1mm, 5microm) with a flow rate 0.60mL/min using a gradient mobile phase comprised of 0.05% formic acid in water (A) and methanol (B), and a run time of 4.5min. The elimination of a tedious sample preparation process and a shorter run time substantially reduced total analysis time. The method was linear over the range 0.5-100ng/mL, with r>0.998. The intra- and inter-assay precisions were 1.4-9.2% and 5.1-8.2%, respectively, and the intra- and inter-assay accuracies were 93.9-98.6% and 92.7-95.3%, respectively. The absolute recoveries were 90.3% (1.5ng/mL), 97.0% (7.5ng/mL) and 92.1% (75.0ng/mL) for 4-HPR, and 99.1% for the internal standard (150ng/mL). The analytical method had excellent sensitivity using a small sample volume (30microL) with the lower limit of quantification (LLOQ) 0.5ng/mL. This method is robust and has been successfully employed in a pharmacokinetic study of 4-HPR in a mouse xenograft model of neuroblastoma.  相似文献   
96.
97.
The evolution of pathogen virulence in natural populations has conventionally been considered as a result of selection caused by the interactions of the host with its pathogen(s). The host population, however, is generally embedded in complex trophic interactions with other populations in the community, in particular, intensive predation on the infected host can increase its mortality, and this can affect the course of virulence evolution. Reciprocally, in the long run, the evolution of virulence within an infected host can affect the patterns of population dynamics of a predator consuming the host (e.g. resulting in large amplitude oscillations, causing a severe drop in the population size, etc.). Surprisingly, neither the effect of predation on the evolution of virulence within a host, nor the influence of the evolution of virulence upon the consumer's dynamics has been addressed in the literature yet. In this paper, we consider a classical S-I ecoepidemiological model in which the infected host is consumed by a predator. We are particularly interested in the evolutionarily stable virulence of the pathogen in the model and its dependence upon ecologically relevant parameters. We show that predation can prominently shift the evolutionarily stable virulence towards more severe strains as compared to the same system without predation. We demonstrate that the evolution of virulence can result in a succession of dynamical regimes and can even lead to the extinction of the predator in the long run. The presence of a predator can indirectly affect the evolution within its prey since the evolutionarily stable virulence becomes a function of the prey growth rate, which would not be the case in a predator-free system. We find that the evolutionarily stable virulence largely depends on the carrying capacity K of the prey in a non-monotonous way. The model also predicts that in an eutrophic environment the shift of virulence towards evolutionarily stable benign strains can cause demographically stochastic evolutionary suicide, resulting in the extinction of both species, thus artificially maintaining severe strains of pathogen can enhance the persistence of both species.  相似文献   
98.
The canonical glutathione transferase (GST) fold found in many monomeric and dimeric proteins consists of two domains that differ in structure and conformational dynamics. However, no evidence exists that the two domains unfold/fold independently at equilibrium, indicating the significance of interdomain interactions in governing cooperativity between domains. Bioinformatics analyses indicate the interdomain interface of the GST fold is large, predominantly hydrophobic with a high packing density explaining cooperative interdomain behavior. Structural alignments reveal a topologically conserved lock-and-key interaction across the domain interface in which a bulky hydrophobic residue ("key") protrudes from the surface of the N-domain and inserts into a pocket ("lock") in the C-domain. To better understand the molecular basis for the contribution of interdomain interactions toward cooperativity within the GST fold in the absence of any influence from quaternary interactions, studies were done with two monomeric GST proteins: Escherichia coli Grx2 (EcGrx2) and human CLIC1 (hCLIC1). Replacing the methionine "key" residue with alanine is structurally nondisruptive, whereas it significantly diminishes the folding cooperativity of both proteins. The loss in cooperativity between domains in the mutants is reflected by a change in the equilibrium folding mechanism from a wild-type two-state process to a three-state process, populating a stable folding intermediate.  相似文献   
99.
To date, only the H1 MAPT haplotype has been consistently associated with risk of developing the neurodegenerative disease progressive supranuclear palsy (PSP). We hypothesized that additional genetic loci may be involved in conferring risk of PSP that could be identified through a pooling-based genomewide association study of >500,000 SNPs. Candidate SNPs with large differences in allelic frequency were identified by ranking all SNPs by their probe-intensity difference between cohorts. The MAPT H1 haplotype was strongly detected by this methodology, as was a second major locus on chromosome 11p12-p11 that showed evidence of association at allelic (P<.001), genotypic (P<.001), and haplotypic (P<.001) levels and was narrowed to a single haplotype block containing the DNA damage-binding protein 2 (DDB2) and lysosomal acid phosphatase 2 (ACP2) genes. Since DNA damage and lysosomal dysfunction have been implicated in aging and neurodegenerative processes, both genes are viable candidates for conferring risk of disease.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号